edexcel

Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 4H

Pearson Edexcel Level 1/Level 2 Certificate Mathematics A (KMAO)
Paper 4H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG040598
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths January 2015 - Paper 4H Mark scheme

Apart from Questions 8, 12e, 17b, and 22b where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes	
1	$\begin{aligned} & 45 \times 3+46 \times 7+47 \times 12+48 \times 23+49 \times 4+50 \times 1 \\ & \text { or } \\ & 135+322+564+1104+196+50 \text { or } \\ & 2371 \end{aligned}$		3		for at least 3 correct products and summing them
	$\begin{aligned} & \text { "2371" } \div 50 \text { or } \\ & \frac{45 \times 3+46 \times 7+47 \times 12+48 \times 23+49 \times 4+50(\times 1)}{50} \end{aligned}$			M1	(dep) for division by 50 NB. If division by something other than 50 this must clearly come from adding the frequency column
		47.42		A1	Accept $47,47.4$ if $2371 \div 50$ seen accept $47 \frac{21}{50}$ but not $\frac{2371}{50}$
					Total 3 marks

\mathbf{Q}	Working	Answer	Mark	Notes
$\mathbf{2}$	32×17 or 544 or $\pi \times 8^{2}$ oe or $200.9-201.602$		3	M1
	$32 \times 17-\pi \times 8^{2}$			M1dep for the complete, correct method
		343		A1 for awrt 343
				Total 3 marks

Q	Working	Answer	Mark	Notes
3	$1-0.3 \mathrm{oe}$ or 0.7 oe		3	M1 accept 100(\%)-30(\%) = 70(\%)
	" 0.7 " $\div 2$ oe			M1 dep accept 70(\%) $\div 2$
		0.35		A1 for 0.35 or 35% or $\frac{35}{100}$ oe
				Total 3 marks

Q Working	Answer	Mark	Notes		
$\mathbf{5}$ (a)		Enlargement	3	B1	These marks are independent but award no marks if the answer is not a single transformation
		(scale factor) 2		B1	
		(centre) (1,3)		B1condone missing brackets around (1, 3); do not accept $\binom{1}{3}$	
(b)		Triangle at (9,2) $(9,4)(8,2)$	1	B1	Total 4 marks

Q	Working	Answer	Mark	Notes	
6 (a) (i)		5,15	2	B1	
(ii)		4, 5, 8, 10, 12, 15, 16		B1	
(b)		No ticked and 5 is a prime number (and a multiple of 5)	1	B1 oe explanation eg. 5 is in both sets	
					Total 3 marks

Q	Working	Answer	Mark	Notes	
$\mathbf{7}$	$240 \times \frac{3}{3+4+8}$ or 48 or $240 \times \frac{8}{3+4+8}$ or 128		3	M1	M2 for $240 \times \frac{5}{3+4+8}$
	$" 128^{\prime \prime-" 48 "}$			M1 dep	
		80		A1	
				Total 3 marks	

Q	Working	Answer	Mark	Notes
8	$\begin{aligned} & 3 x-5+3 x+4 x+2 \\ & (=10 x-3) \end{aligned}$		4	M1 correct expression for perimeter (may be seen in an equation)
	$\begin{aligned} & 3 x-5+3 x+4 x+2=62 \text { or } \\ & " 10 x-3 "=62 \end{aligned}$			M1 dep
	eg. $10 x-3=62$			M1 (dep) correct method to collect x terms in a correct equation
		$6.5 \text { or } 6 \frac{1}{2}$		A1 dep on all method marks
				SC: B2 for $x=6.5$ and $3 \times 6.5-5+3 \times 6.5+4 \times 6.5+2=62$ (B1 for a value for x substituted into correct expression for perimeter eg. $3 \times 6-5+3 \times 6+4 \times 6+2$)
				Total 4 marks

Q Working	Answer	Mark	Notes	
$\mathbf{9}$		$1,8,9$	2	B2B1 for 2, 8,8 or $0,8,10$ or for three numbers with a mean of 6 or a median of 8 or $6 \times 3(=18)$$\quad$Total 2 marks

Q	Working	Answer	Mark	Notes	
10 (a)	$3 x<35-8$ or $3 x<27$		2		allow $3 x=35-8$ or $3 x=27$ condone incorrect inequality sign
		$x<9$		A1	for $x<9$ or $9>x$ NB: Final answer must be an inequality SC: B1 for $x \leq 9$ or $x=9$ or 9 as an answer
(b)		$-2<x \leqslant 4$ oe	2	B2	B1 for one end of inequality correct ie. $-2<x$ or $x \leqslant 4$ OR $-2 \leqslant x<4$ condone the use of a variable other than x but not O
					Total 4 mark

Q		Working			Answer			Mark	Notes
$\mathbf{1 2}$ (a)		$c(c-5)$	2	B2Award B2 also for $(c \pm 0)(c-5)$ or $c \times(c-5)$ B1 for factors which, when expanded and simplified, give two terms, one of which is correct					

Q	Working	Answer	Mark	Notes
$\mathbf{1 3}$ (a)		7.6×10^{-5}	1	B1
(b)		160000000	1	B1
(c)	$\frac{1.6 \times 10^{8}}{1.4 \times 10^{7}}$ or $\frac{16}{1.4}$ or $\frac{80}{7}$ or $\frac{160000000}{14000000}$ or		2	M1
	$11.428 \ldots$	11		A1 cao
				Total 4 marks

Q	Working	Answer	Mark	Notes
15 (a)			2	M1 line $y=2$ drawn
		-1,3		A1 SC: B1 for ($-1,2$) and (3,2$)$
(b)	$\begin{aligned} & x^{2}+5 x-7+6=6 \text { or } \\ & x^{2}+5 x-7-7 x=-7 x \text { or } \\ & x^{2}-2 x-1=-7 x+6 \\ & \hline \end{aligned}$		2	M1 addition of 6 to both sides or subtraction of $7 x$ from both sides or $a=-7$ or $b=6$
		$a=-7, b=6$		A1 SC: B1 for $a=7$ and $b=-6$
				Total 4 marks

Q	Working Answer		Mark	Notes
16 (a)		0.1 oe for Chris fail or 0.35 oe for Sunil fail	3	B1 stated or in correct position
		correct binary structure		B1 4 branches needed on RHS
		ALL labels and values correct		B1 accept P and F
(b)	$\begin{array}{\|l} 0.9 \times " 0.35 " \text { or } " 0.1 " \times 0.65 \text { or } \\ 0.9 \times 0.65 \text { and } 0.1 \times 0.35 \\ \hline \end{array}$		3	M1
	$\begin{array}{\|c} \hline 0.9 \times 0 \times 0.35 "+0.1 " \times 0.65 \text { or } \\ 1-(0.9 \times 0.65+0.1 \times 0.35) \\ \hline \end{array}$			M1 complete method
		0.38		A1 for 0.38 oe eg. $\frac{19}{50}$
				Total 6 marks

Q	Working	Answer	Mark	Notes
17 (a)	$\begin{aligned} & \frac{1}{2} \times 2 x \times(x+x+7) \text { or } \\ & 2 x \times x \text { or } \frac{1}{2} \times 7 \times 2 x \text { or } \\ & 2 x \times(x+7) \\ & \hline \end{aligned}$		3	M1 for area of trapezium or any relevant area Allow $2 x$ in place of $x+x$
	$\begin{aligned} & \frac{1}{2} \times 2 x \times(x+x+7)=17 \text { or } \\ & 2 x \times x+\frac{1}{2} \times 7 \times 2 x=17 \text { or } \\ & 2 x \times(x+7)-\frac{1}{2} \times 7 \times 2 x=17 \end{aligned}$			M1 Allow $2 x$ in place of $x+x$
		show		A1 for deriving the given answer $2 x^{2}+7 x-17=0$ correctly
(b)	$\frac{-7 \pm \sqrt{7^{2}-4 \times 2 \times-17}}{2 \times 2}$		3	M1 for correct substitution; condone one sign error in substitution Accept + in place of \pm NB. Terms may be simplified eg. accept 4 in place of 2×2 in denominator
	$\sqrt{185}$ or $\sqrt{49+136}$ or 13.6...			M1 (independent) for correct simplification of discriminant (if evaluated at least 3 sf rounded or truncated)
		1.65		A1 dep on $1^{\text {st }} \mathrm{M}$ mark scored for value rounding to 1.65 given as final answer Award 3 marks if first M1 scored and answer correct

Q	Working	Answer	Mark	Notes
$\mathbf{1 8}$	400.5 or $400.4 \dot{9}$ or 399.5 or 50.25 or 50.15 or $50.24 \dot{9}$			B1 any correct UB or LB
	$\frac{400.5}{50.15}$ or $\frac{400.4 \dot{9}}{50.15}$		M1	
		7.99		A1 or 7.986...

Q	Working	Answer	Mark	Notes
19 (a)		$\binom{10}{-4}$	1	B1
(b)	$3\binom{1}{7}-\binom{-7}{0}$ or $\binom{3}{21}$		2	M1 \quad or $\binom{x}{21}$ or $\binom{10}{y}$
		$\binom{10}{21}$		A1
(c)	$5^{2}+(-2)^{2}$ or $5^{2}+2^{2}$ or 29		2	M1 accept $5^{2}+-2^{2}$
		$\sqrt{29}$		A1 $\begin{aligned} & \text { accept answers in the range } \\ & 5.38-5.385\end{aligned}$
				Total 5 marks

Q	Working	Answer	Mark	Notes	
20	$26 \div 20(=1.3) \text { or }$ 3.6×10 or 3.3×10 or 1×30 or 36 or 33 or 30 or $\frac{26}{130}\left(=\frac{1}{5}\right)$		3	M1	Any one frequency density (without contradiction) or, eg. $1 \mathrm{~cm}^{2}=5$ or clear association of area with frequency
	$\begin{aligned} & 26+3.6 \times 10+3.3 \times 10+1 \times 30 \text { or } \\ & 26+36+33+30 \text { or } \\ & 625 \times \frac{1}{5} \text { or }(130+180+165+150) \times \frac{1}{5} \end{aligned}$			M1	Any fully correct complete method; condone one error in bar width or bar height
		125		A1	
					Total 3 marks

Q	Working	Answer	Mark	Notes
21	$\frac{4}{3} \times \pi \times(2 r)^{3}$		3	M1 condone omission of brackets
	$\pi \times r^{2} \times h=\frac{4}{3} \times \pi \times(2 r)^{3}$			M1 dep brackets must be present or $8 r^{3}$ seen
		$\frac{32}{3} r$		A1
				Total 3 marks

Q	Working	Answer	Mark	Notes	
22 (a)		2^{-5}	2		B1 for $\frac{1}{2^{5}}$ or $\left(\frac{1}{2}\right)^{5}$ or 2^{5}
(b)	$\begin{aligned} & 20-4 \sqrt{3}+5 \sqrt{12}-\sqrt{3} \sqrt{12} \text { or } \\ & 20-4 \sqrt{3}+5 \sqrt{12}-\sqrt{36} \text { or } \\ & 20-4 \sqrt{3}+5 \sqrt{12}-6 \end{aligned}$		3	M1	for at least 3 correct terms with correct signs or all 4 terms correct without signs
	$\begin{aligned} & \sqrt{12}=\sqrt{4 \times 3} \text { or } \sqrt{12}=2 \sqrt{3} \text { or } \\ & 5 \sqrt{12}=5 \sqrt{4 \times 3} \text { or } 5 \sqrt{12}=10 \sqrt{3} \end{aligned}$			M1	NB. This may be seen before the expansion of the brackets
		show		A1	dep on both method marks for deriving the given answer
					Total 5 marks

Q	Working	Answer	Mark	Notes
$\mathbf{2 3}$	$x^{2}-4=(x+2)(x-2)$		4	B1independent
	$[5-](x+2) \times \frac{(x-3)}{\left(x^{2}-4\right)}$ or		M1for dealing with division of $(x+2)$ by $\frac{x^{2}-4}{x-3}$ $\frac{5(x-2)}{(x-2)}-\frac{(x-3)}{(x-2)}$ or $\frac{5(x-2)(x+2)}{(x-2)(x+2)}-(x+2) \times \frac{(x-3)}{(x-2)(x+2)}$ or $\frac{5\left(x^{2}-4\right)}{x^{2}-4}-(x+2) \times \frac{(x-3)}{x^{2}-4}$	

Q	Working	Answer	Mark	Notes	
24	$\frac{x}{360} \times \pi \times r^{2}=5 \pi$		6	M1 for this mark only condone an incorrect value for r	
	$x=50$			A1 cao for angle $A O B=50$	
	$\left(A B^{2}=6^{2}+6^{2}-2 \times 6 \times 6 \times \cos \left({ }^{(50 ")}\right.\right.$			M1 dep on first M1 or $6 \times \sin (" 50 " / 2)$	$\begin{aligned} & \hline \mathrm{M} 2 \text { for }(A B=) \\ & \sqrt{25.7 \ldots} \text { or } \\ & 5.07 \ldots . \ldots \text { or } \\ & 2 \times \\ & 6 \times \sin " 50 " / 2 \end{aligned}$
	$(A B=) \sqrt{25.7 \ldots}$ or 5.07....			$\begin{array}{ll} \hline \text { M1 } & \text { dep or } \\ & 2 \times 6 \times \sin (" 50 " / 2) \end{array}$	
	$\begin{aligned} & \frac{" 50 "}{360} \times 2 \times \pi \times 6 \text { or } \\ & \frac{5 \pi \times 2 \pi \times 6}{\pi \times 6^{2}} \text { or } \frac{5}{3} \pi \text { or } 5.23 \ldots \end{aligned}$			M1 dep on first M1 if " 50 " used but indep if angle not used	
		10.3		A1 for answer in rang	10.2-10.31
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

